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Extension Neural Network-Type 2 and Its
Applications

Mang-Hui Wang, Member, IEEE

Abstract—A supervised learning pattern classifier, called the
extension neural network (ENN), has been described in a recent
paper. In this sequel, the unsupervised learning pattern clustering
sibling called the extension neural network type 2 (ENN-2) is pro-
posed. This new neural network uses an extension distance (ED)
to measure the similarity between data and the cluster center. It
does not require an initial guess of the cluster center coordinates,
nor of the initial number of clusters. The clustering process is
controlled by a distanced parameter and by a novel extension
distance. It shows the same capability as human memory systems
to keep stability and plasticity characteristics at the same time,
and it can produce meaningful weights after learning. Moreover,
the structure of the proposed ENN-2 is simpler and the learning
time is shorter than traditional neural networks. Experimental
results from five different examples, including three benchmark
data sets and two practical applications, verify the effectiveness
and applicability of the proposed work.

Index Terms—ENN-2, extension neural network (ENN), neural
networks (NNs), unsupervised learning.

I. INTRODUCTION

THE learning algorithms of neural networks can be catego-
rized into two classes—supervised learning and unsuper-

vised learning—according to the availability of the goal output
for given input data. Supervised learning is a process that incor-
porates an external teacher and environmental information, so it
requires an external goal output to respond to input data. A su-
pervised learning neural network (NN) can estimate a relation
function between the inputs and outputs from a learning process
and also can discover mapping from feature space into a space
of classes. Unsupervised learning is a process that incorporates
no external teacher; it results in exposition of clusters for given
input patterns. The goal of cluster analysis is to partition a set
of patterns into a group of desired subsets.

Classification or cluster analysis is one of the most important
applications of neural networks. There are many popular neural
networks using unsupervised learning, which have been used for
solving classification problems in many fields [1]–[6]. Typically
neural networks include Kohonen neural networks (KNNs) [1]
and adaptive resonance theory (ART) networks [3], [4]; there
have been many successful applications in many fields. The
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KNN employs a winner-take-all learning strategy to store sim-
ilar patterns in one neuron. KNN has good applications in pho-
netic or image pattern recognition. The ART network is an un-
supervised learning and adaptive pattern recognition system. It
can quickly and stably learn to categorize input patterns and
permit an incremental learning for significant and new informa-
tion. ART neural networks have the ability to learn new objects
and keep old memories; the system has the two characteristics
of stability and plasticity, in the same system, which is the same
capability as human memory systems.

It is very important to develop one memory system to keep
stability and plasticity at the same time and also keep the system
low in computation cost and in memory consumption in the
modern commodities [7]–[9]. On the other hand, there are some
classification problems whose features are defined over an in-
terval of values in our world. For example, boys can be defined
as a cluster of men from age 1 to 14, and the permitted opera-
tion voltages of a specified motor may be between 100 and 120
V. For these problems, several new neural networks have been
proposed for where the features are defined over an interval of
values, such as fuzzy lattice networks [10], [11] and radial basis
function networks [12], [13]. There have been many successful
applications in some fields. Nevertheless, the applicability do-
main of all previous neural schemes is more or less restricted.
Therefore, a new neural network topology, called the extension
neural network (ENN), was proposed to solve these problems in
our recent paper [14]. In other words, the ENN permits classifi-
cation of problems whose features are defined over an interval
of values in our world, supervised learning, or continuous input
and discrete output. This new neural network is a combination of
the extension theory [15] and the neural network. The ENN uses
a modified extension distance (ED) to measure the similarity be-
tween data and cluster center; it permits adaptive processes for
significant and new information and gives shorter learning times
than traditional neural networks. Moreover, this ENN has shown
higher accuracy with less memory consumption in applications
[14].

In this sequel, an ENN unsupervised learning pattern cluster
relative called the extension neural network type 2 (ENN-2) is
presented. The architecture of the ENN-2 is almost the same as
the ENN; it uses the proposed extension distance and a distance
parameter to control the clustering process. The learning algo-
rithm of the ENN-2 implements a follow-the-leader approach. It
does not require an initial guess of the cluster center coordinates,
nor of the initial number of clusters. Five applicable examples
will be tested to show the effectiveness of this new neural net-
work.
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TABLE I
THREE DIFFERENT SORTS OF MATHEMATICAL SETS

II. SUMMARY OF EXTENSION THEORY

In the crisp set, an element either belongs to or does not be-
long to a set, so the range of the truth-values is {0, 1}, which can
be used to solve a two-valued problem. In contrast to the crisp
set, the fuzzy set allows for the description of concepts in which
the boundary is not explicit. It concerns not only whether an
element belongs to the set but also to what degree it belongs.
The range of membership function is [0, 1] in the fuzzy set.
The extension theory was originally created by Cai to solve con-
tradictions and incompatibility problems in 1983 [15]. The ex-
tension set extends the fuzzy set from [0, 1] to . This
means that an element belongs to any extension set to a different
degree. Define the membership function by to represent
the degreeto which an element belongs to a set. A degree be-
tween zero and one corresponds to the normal fuzzy set. When

, it describes the degree to which does not belong to
a set, which is not defined in a fuzzy set. When ,
this means that the element still has a better chance to be in-
cluded into the set if the set is adjusted. implies
that the element has no chance to belong to the set. It is also
to represent the degree of an element not belonging to a set. The
extension theory tries to solve incompatibility or contradiction
problems by the transformation of the matter element. Compar-
isons of crisp sets, fuzzy sets, and extension sets are shown in
Table I. Some definitions of extension theory are introduced in
the next section.

A. Matter-Element Theory

1) Definition of Matter-Element: Defining the name of a
matter by , one of the characteristics of the matter by and
the value of by , a matter-element in extension theory can
be described as follows:

(1)

where and are called the three fundamental elements of
the matter-element. For example, R (John, Weight, kg) can
be used to state that John’s weight is 80 kg. If the value of the
characteristic has a classical domain or a range, we define the
matter-element for the classical domain as follows:

(2)

where and are the lower bound and upper bound of a
classical domain, respectively.

2) Multidimensional Matter-Element: Assuming
a multidimensional matter-element, a char-
acteristic vector and , a value vector of ,
then a multidimensional matter-element is defined as

(3)

where is defined as the sub-
matter-element of . For example

workpiece length cm cm
diameter cm cm
weight kg kg

(4)
is a three-dimensional matter element.

3) Divergence of Matter-Element: A matter may have many
characteristics; the same characteristics and values may also be-
long to some other matter. In extension theory, there are some
formulations to express these points as follows.

Definition 1: If a matter has many characteristics, it can be
written as

(5)
The symbol “ ” means the extension of matter.

Definition 2: If some other matter has the same character-
istic, it can be written as

(6)

Definition 3: If some matter has the same value, it can be
written as

(7)

B. Extension Set Theory

1) Definition of Extension Set: Let be the universe of dis-
course. Then an extension set on is defined as a set of or-
dered pairs as follows:

(8)

where is called the membership function for ex-
tension set . maps each element of to a member-
ship grade between and . The higher the degree, the
more the element belongs to the set. Under a special condition,
when , it corresponds to a normal fuzzy set.

implies that the element has no chance to be-
long to the set. When , it is called an extension
domain, which means that the element still has a chance to
become part of the set.

2) Definition of Correlation Function: If and
are two intervals in the real number field, and
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Fig. 1. The extended membership function.

, then the correlation function in the extension theory can be
defined as follows:

(9)

where is defined as the extension distance between
and and written as

(10)

(11)

The correlation function can be used to calculate the
membership grade between and as shown in Fig. 1. When

, it indicates the degree to which belongs to .
When , it describes the degree to which does not
belong to , which is not defined in fuzzy set theory. When

, it is called the extension domain, which
means that the element still has a chance to become part of
the set if conditions change.

III. EXTENSION NEURAL NETWORK TYPE 2

The structure of ENN-2 is almost same as ENN proposed in
our earlier paper [14]; the proposed ENN-2 is a combination
of the neural network and the extension theory. The extension
theory introduces a novel distance measurement for classifica-
tion processes, and the neural network can embed the salient
features of parallel computation power and learning capability.
As in the statement mentioned in the introduction, the proposed
ENN-2 also simultaneously has stability and plasticity charac-
teristics; it permits an adaptive process for significant and new
information, and keeps the old information in memory.

A. Architecture of the ENN-2

The schematic architecture of the ENN-2 is depicted in Fig. 2.
It comprises an input layer and an output layer. The nodes in
the input layer receive an input feature pattern and use a set of
weighted parameters to generate an image of the input pattern.
In this network, there are two connection values (weights) be-
tween input nodes and output nodes; one connection represents

Fig. 2. The structure of an extension neural network.

the lower bound for this classical domain of the features and the
other connection represents the upper bound. The connections
between the th input node and the th output node are
and . This image is further enhanced in the process charac-
terized by the output layer. Only one output node in the output
layer remains active to indicate a classification of the input pat-
tern. The learning algorithm of the ENN-2 is discussed in the
next section.

B. Unsupervised Learning Algorithm of the ENN-2

The learning of the ENN-2 can be seen as unsupervised
learning. This algorithm implements a follow-the-leader ap-
proach. It does not require the initial number of clusters, nor
an initial guess of the cluster center coordinates. The ENN-2
uses a threshold called the distance parameter (DP) and a
novel ED function to control the clustering process. DP is
used to measure the distance between the cluster center and the
desired boundary. First, a pattern is selected as the center of
the first cluster, and the initial weights of the first cluster can
be computed from the center with desired distance parameter

. Then the next pattern is compared to the first cluster. It
is clustered with the first if its distance is smaller than the
vigilance parameter (i.e., it just equals the number of features).
Otherwise, it forms the center of a new cluster. This process is
repeated for all patterns until a stable cluster formation occurs.
Before the learning, several variables have to be defined as
follows:

th pattern;
th feature of the th input pattern;

center of the cluster ;
distance parameter;
total number of the input pattern;
number of the features;
number of existing clusters;
number of patterns belonging to cluster .

The detailed unsupervised learning algorithm of the ENN-2 can
be described as follows.
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Fig. 3. The proposed ED.

Step 1) Set the desired DP . The DP is used to mea-
sure the distance between the cluster center and the desired
boundary. It is a user-defined parameter that must be judi-
ciously determined from an engineering knowledge of the
system requirements.
Step 2) Produce the first pattern, and . Then the
center coordinates and weights of the first cluster are calcu-
lated as

(12)

(13)

for (14)

for (15)

Step 3) Read the input pattern vectors by letting , and
go to next step
Step 4) Read the th input pattern
and calculate the extension distance between and
the existing th cluster center as

for

(16)
This proposed ED is a modification extension distance of
(16). It can be graphically presented as Fig. 3; it can describe
the distance between the and a real interval . The
concept of distance, the position relation between a point and
an interval, can be precisely expressed by means of the quan-
titative form. When a point lies in the interval, the distance is
considered as zero by the classical math, but different posi-
tions of a point in the interval can be described with the dis-
tance value by the proposed extension distance. Fig. 3 clearly
shows that the distance equals one when a point appears on
the lower bound and upper bound of interval.
Step 5) Find the for which

for (17)

Step 6) Step 6: If , then create a new cluster center.
According to the definition of proposed extension distance,

when the lies in the interval, the distance is considered as
smaller than 1, thus if has fea-
tures in the clustering process, when expresses
that does not belong to p-th cluster. Then a new cluster
center will be created,

(18)

(19)

for (20)

for (21)

(22)

else, the pattern belongs to the cluster , and update the
weights and center of cluster

(new) (old) (23)

(new) (old) (24)

(new) (new)
(25)

(26)

Step 7) If input pattern changes from cluster “o” (the old
one) to “k” (the new one), then the weights and center of
cluster “o” are modified as

(new) (old) (27)

(new) (old) (28)

(new) (new)
(29)

for

(30)

The result of tuning two clusters’ weights is shown in Fig. 4,
clearly indicating the change of and . The cluster
of pattern is changed from cluster “o” to “k” due to

. From this step, we can clearly see that the
learning process is only to adjust the weights of the th
and the th clusters. Therefore, the proposed method has a
speed advantage over other unsupervised learning algorithms
and can quickly adapt to new and important information. It
should be noted that the clustering process of the proposed
ENN-2 keeps stability and plasticity characteristics at the
same time.
Step 8) Set and repeat Steps 4)–8) until all the
patterns have been compared with the existing clusters,
Step 9) If the clustering process has converged, end; other-
wise, return to Step 3).
According to the proposed unsupervised learning algorithm,

ENN-2 permits fast adaptive processes for significant and new
information. It is easy to acquire knowledge and maintain the
classification database. Moreover, the proposed method has a
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Fig. 4. The results of tuning cluster weights: (a) original condition; (b) after
tuning.

Fig. 5. The Simpson data set.

speed advantage over the traditional unsupervised learning al-
gorithms.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed ENN-2, three
benchmark data sets and two practical industry examples are
used to illustrate the applications of the proposed ENN-2. It
should be noted that epoch, as used in this paper, is defined as
one presentation of whole data vectors in the data set.

A. Simpson Data Set

The Simpson data set, a benchmark-tested data set, is a two-
dimensional data set consisting of 24 points as shown in Fig. 5
[16]. This is a perceptual grouping problem in vision, which
deals with the detection of the right partition of an image into

TABLE II
COMPARISON OF THE CLASSIFICATION PERFORMANCE OF VARIOUS

NEURAL NETWORKS

subsets [17]. At lower spatial resolution, three cluster partitions
may be perceived. To compare the learning capability, Table II
shows the comparison of the experimental results of the pro-
posed ENN with other typical ART neural networks [18] on
the three-cluster portions. It can be seen from Table II that the
proposed ENN has a shorter learning time than the traditional
neural networks because the learning of ENN is only to tune the
low bound and upper bound of the excited connections. On the
other hand, the average confusion number of the proposed ENN
is zero. It can completely partition the Simpson data set into
three clusters by setting the distance parameter of 0.0615. In
opposition, the other neural networks may produce confusion
on the three-cluster partitions.

Fig. 6 shows the clustering results of the proposed ENN-2
with the different distance parameter . The number of clus-
ters created ranges from one to four, and the learning times of
every clustering process are also only one epoch. The distance
parameter may be considered a constant prescribed by the user
and determined through engineering judgment. Usually, smaller
distance parameters can produce a higher degree of coherence
patterns in a cluster, and more clusters will be produced. On
the other hand, it may be viewed as a function of self-organized
data structures. If labeled pattern attributes take discrete values
(e.g., good/fair/bad), the clustering process is reiterated within
a particular cluster until a clear distinction among attributes is
achieved. In the continuous case, one can define intervals of the
range of attribute values; automatic adjustment of distance pa-
rameters then occurs. To illustrate the stability and plasticity ca-
pability of the proposed ENN-2, the clustering results with dif-
ferent new data are shown in Fig. 7. If the new data is near the
center of cluster 3 and for a determined distance pa-
rameter (e.g. 0.05), then this new data will be included in cluster
3 and ENN-2 will only tune the weights between input layer and
cluster 3 (i.e. the third node of output layer). If the new data are
far from all cluster centers and for a determined dis-
tance parameter (e.g. 0.05), then these new data will create a
new cluster and the original weights of old clusters will be re-
tained.

B. WINE Benchmark

The WINE recognition data were taken from the UCI reposi-
tory of machine learning databases [19], [20]. These data are the
results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of
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Fig. 6. A demonstration of the clustering performance of the proposed ENN-2
with four different distance parameters. (a) � = 0:15; (b) � = 0:1; (c) � =

0:0615; (d) � = 0:05.

the three types of wines. One hundred seventy-eight data vec-
tors are given distributed by 59, 71, and 48 in three wine types.
Because the proposed ENN-2 is an unsupervised learning pat-
tern clustering neural network, so the clustering performance of
the proposed ENN-2 is compared with the other unsupervised
learning algorithms. Table III summarizes the classification re-
sults by different clustering methods that include ART network
[4], k-means algorithm [21], and fuzzy-C-means algorithm [22];
all clustering results are the average of ten random trials. It is

Fig. 7. The stability and plasticity test of the proposed ENN-2.

TABLE III
RECOGNITION RESULTS FOR THE WINE BENCHMARK BY VARIOUS METHODS

clear that the proposed ENN-2 has a shorter learning time than
the other unsupervised learning algorithms. Also, the accuracy
rates are quite high, with about 96.62% for this recognition data.

C. Breast Cancer Benchmark

This breast cancer databases was obtained from the Univer-
sity of Wisconsin Hospitals, Madison, from Dr. W. H. Wol-
berg [19], [23]. The aim was the correct identification of the
type of breast cancer in one of two classes from a vector of
ten attributes. Six hundred ninety-nine data vectors are given
distributed by 458 (65.5%) benign and 241 (34.5%) malignant
cancers. There are 16 instances that contain a single missing
(i.e., unavailable) attribute value; thus only 683 data vectors are
tested in this paper. Table IV summarizes the classification re-
sults by different clustering methods that include ART network,
k-means algorithm, and fuzzy-C-means algorithm; all clustering
results are the average of ten random trials. It is clear that the
proposed ENN-2 has a shorter learning time and higher accu-
racy rates than the other unsupervised learning algorithms.
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TABLE IV
RECOGNITION RESULTS FOR THE BREAST CANCER BENCHMARK BY

VARIOUS METHODS

TABLE V
TESTED DATA OF GENERATOR SETS

D. Vibration Diagnosis of Generator Sets

To demonstrate the practical applications of the ENN-2, a vi-
bration diagnosis data set [24], [25], consisting of 15 patterns,
is introduced as shown in Table V. The vibration diagnosis of
the generator set is based on the principle that components in
engineering systems and plants produce vibration during opera-
tion. If a generator set is operating properly, vibration conditions
are usually small and constant, but when faults grow or some of
the dynamic processes in the machine change, the vibration sig-
nature also changes. Therefore, diagnostic information can be
supplied by the spectrum of the vibration signal. In agreement
with past studies [14], [24], [25], the typical six attributes of vi-
bration frequency (amplitude of 0.4 f, 0.4 f 0.5 f, f, 2 f, 3 f,
and 3 f) are selected for vibration fault diagnosis, and the de-
tailed training data are shown in Table V.

To compare diagnosis performance, the diagnosis results with
two different classification methods, i.e., multilayer perceptron
(MLP) [24] and adaptive wavelets network (AWN) [25], are
shown in Table VI. The two traditional neural networks were
capable of pointing toward faults, but both need to learn about
2561 and 900 epochs before fault diagnosis. Contrarily, the pro-
posed ENN-2 only needs one epoch to learn with equivalent

TABLE VI
LEARNING RESULTS USING DIFFERENT NEURAL NETWORKS

Fig. 8. The number of clusters with different distance parameters.

TABLE VII
FAULT MATTER-ELEMENT MODELS OF GENERATOR SETS

accuracy, and the structure of the proposed ENN-2 is simpler
than the other neural networks, with only nine nodes and 36
connections needed. Fig. 8 shows the clustering results with
different distance parameters. The number of clusters created
ranges from 1 (when the is the largest) to 15 (when the is
the smallest). It is clear that while the distance parameters are
set between 0.8 and 2.1, the ENN-2 always clusters this six-di-
mension data set of three clustering groups as its fault types in
Table V. When the ENN-2 is finished clustering, the matter-el-
ement models of three fault types can be produced as shown
in Table VII. Where is the matter-element of the th fault
type, where is the fault set, is the th
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Fig. 9. The typical swing curves of the generators.

fault type. The up-bound and low-bound of every feature can be
taken from the weights of ENN-2. It is of great importance to
recognize incipient faults in generator sets, so that maintenance
engineers can switch them safety and improve the reliability of
power supplies. It should be noted that the proposed ENN-2 can
produce meaningful output after the learning because the clas-
sified boundaries of the features can be self-organized by tuning
the weights of ENN-2.

E. Coherency Identification of Large Power Systems

In the dynamic study of large power systems, it is necessary to
model the external system by dynamic equivalents to improve
the solution speed and to reduce the problem to solvable size.
One approach to build up a dynamic equivalent is to identify
generators in the external system with high coherency. A group
of generators in the external system is said to be coherent if each
pair of generators in the group is similar in terms of dynamic be-
havior. Basically, the coherent measurement is dependent on the
tolerance of the rotor angle deviations of the generator. Fig. 9
shows the swing curves of three generators G1, G2, and G3.
It is clear that the generator pair (G1, G2) is higher in coher-
ence than the generator pairs (G1, G3) and (G2, G3). To verify
the effectiveness of the proposed ENN-2 on large-scale systems,
a comprehensive test at Taiwan power systems (Taipower) was
conducted. Taipower is the only power system in Taiwan; it has a
longitudinal structure covering a distance of 400 km from north
to south. This system contains 34 generators, and the highest
transmission system voltage is 345 kV. It is divided into three
areas: north, central, and south, as shown in Fig. 10. In agree-
ment with our past study [26], the typical three values (rotor
speed at the instant of fault clearing, 0.2 , and

0.4 ) are selected for coherency identification.
Fig. 11 shows the number of coherent groups with different

distance parameters in Taipower system while a three-phase
fault at bus #53 occurs and the fault is cleared in 0.2 s. Obvi-
ously, the set of the resulting clusters can only decrease as the
distance parameters increase in value. It should be noted that the
presented method always converges with the maximum number
of iterations not exceeding two, which is also less than our past
results [26]. According to our past results [26], the k-means al-
gorithm and ART neural network method need about four iter-
ations. Table VIII shows typical coherent groups with three dif-
ferent distance parameters, and Figs. 12–14 show the different
degrees of coherent groups with three different distance param-
eters. Usually, smaller distance parameters can produce a higher

Fig. 10. The one-line diagram of the Taipower system.

Fig. 11. The number of clusters with different distance parameters in Taipower
system.

degree of coherence generator groups. The distance parameter
is a user-made parameter that must be judiciously chosen on the
basis of engineering experience.
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TABLE VIII
IDENTIFIED COHERENT GROUPS WITH DIFFERENT DISTANCE PARAMETERS

Fig. 12. Coherent group 3 of the Taipower system while distance parameter
equals 0.3.

V. CONCLUSIONS

A novel extension neural network type 2 based on the author’s
earlier research is proposed in this paper. Compared with tradi-
tional neural networks and other traditional clustering methods,

Fig. 13. Coherent group 3 of the Taipower system while distance parameter
equals 0.6.

Fig. 14. Coherent group 5 of the Taipower system while distance parameter
equals 1.

it permits an adaptive process for significant and new infor-
mation, and can keep stability and plasticity characteristics at
the same time. The proposed ENN-2 can produce meaningful
output after learning because the classified boundaries of the
features can be clearly determined by tuning the weights of
ENN-2, so the matter-element models of the clustering problem
can be easy built. Moreover, due to the simpler structure of the
proposed ENN-2, it can keep the system low in computation
cost and in memory consumption, which is a significant advan-
tage in the modern commodities. From the tested examples, the
proposed ENN-2 has been proved to have the advantage of less
learning time, higher accuracy, and less memory consumption.
It is also more efficient in engineering applications.
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